Challenge of N95 filtering facepiece respirators with viable H1N1 influenza aerosols.
نویسندگان
چکیده
OBJECTIVE. Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODs. Five N95 FFR models were challenged with aerosolized viable H1N1 influenza and inert polystyrene latex particles at continuous flow rates of 85 and 170 liters per minute. Virus was assayed using Madin-Darby canine kidney cells to determine the median tissue culture infective dose (TCID50). Aerosols were generated using a Collison nebulizer containing H1N1 influenza virus at 1 x 10(8) TCID50/mL. To determine filtration efficiency, viable sampling was performed upstream and downstream of the FFR. RESULTS. N95 FFRs filtered 0.8-μm particles of both H1N1 influenza and inert origins with more than 95% efficiency. With the exception of 1 model, no statistically significant difference in filtration performance was observed between influenza and inert particles of similar size. Although statistically significant differences were observed for 2 models when comparing the 2 flow rates, the differences have no significance to protection. CONCLUSIONS. This study empirically demonstrates that a National Institute for Occupational Safety and Health-approved N95 FFR captures viable H1N1 influenza aerosols as well as or better than its N95 rating, suggesting that a properly fitted FFR reduces inhalation exposure to airborne influenza virus. This study also provides evidence that filtration efficiency is based primarily on particle size rather than the nature of the particle's origin.
منابع مشابه
A pandemic influenza preparedness study: use of energetic methods to decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets.
BACKGROUND A major concern among health care experts is a projected shortage of N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One option for mitigating an FFR shortage is to decontaminate and reuse the devices. Many parameters, including biocidal efficacy, filtration performance, pressure drop, fit, and residual toxicity, must be evaluated to verify the effectiveness ...
متن کاملEvaluation of Multiple (3-Cycle) Decontamination Processing for Filtering Facepiece Respirators
Disposable N95 filtering facepiece respirators (FFRs) certified by the National Institute for Occupational Safety and Health (NIOSH) are widely used by healthcare workers to reduce exposures to infectious biological aerosols. There is currently major concern among public health officials about a possible shortage of N95 FFRs during an influenza pandemic. Decontamination and reuse of FFRs is a p...
متن کاملEvaluation of a quantitative fit testing method for N95 filtering facepiece respirators.
A method for performing quantitative fit tests (QNFT) with N95 filtering facepiece respirators was developed by earlier investigators. The method employs a simple clamping device to allow the penetration of submicron aerosols through N95 filter media to be measured. The measured value is subtracted from total penetration, with the assumption that the remaining penetration represents faceseal le...
متن کاملEvaluation of N95 Filtering Facepiece Respirators Challenged with Engineered Nanoparticles
NIOSH-certified respirators, including N95 respirators, are recommended when engineering and administrative controls do not adequately prevent exposures to airborne nanomaterials. Laboratory evaluations of filtering efficiency using standard test aerosols have been reported in the literature, but there is no information on penetration of engineered nanoparticles (1–100 nm) for N95 filtering fac...
متن کاملFilter Performance Degradation of Electrostatic N95 and P100 Filtering Facepiece Respirators by Dioctyl Phthalate Aerosol Loading
Polydisperse dioctyl phthalate (DOP) aerosols are employed for testing filter penetration with loading of Rand P-series particulate filters for National Institute for Occupational Safety and Health (NIOSH) certification. Penetration for filters must not exceed NIOSH allowed maximum levels during the entire loading of 200 mg DOP indicating no filter degradation. Degradation of respirators loaded...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection control and hospital epidemiology
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2013